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• Discrete and Continuous Distributions, Independence
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• Expectations, Covariance, Entropy, KL Divergence, Mutual Information

• Generative vs Discriminative Models
• Learning Generative Models
• Learning Criterion: Maximum Likelihood Estimation
• Learning Algorithm: Stochastic Gradient Descent

• Classes of Generative Models
• Gaussian Models: Closed form Solution
• General Models: Need for Structure
• Taxonomy of Models

• Latent variable models, Autoregressive models, Energy based models

Outline



• Data 𝒙 ∈ 𝒳 follows some data distribution 𝒙 ∼ 𝑝!(𝒙) with parameter 𝜃.
• Properties: 𝑝! 𝒙 ≥ 0 (non-negativity), ∫ 𝑝! 𝒙 𝑑𝑥 = 1 (add up to 1)

• Continuous case: 𝒙 ∈ ℝ" , 𝑝!(𝒙) is a probability density function.
• E.g., Gaussian distribution: 𝒙 ∼ 𝒩 𝒙 𝝁, 𝚺 , 𝜃 = 𝝁, 𝚺 , 𝝁 ∈ ℝ", 𝚺 ∈ ℝ"×", 𝚺 ≽ 0

𝑝! 𝒙 = 2𝜋 $"% det Σ $&% exp −
1
2
𝒙 − 𝝁 '𝚺$&(𝒙 − 𝝁)

• Discrete case: 𝒙 ∈ {𝒙#, … , 𝒙$}, 𝑝!(𝒙) is a probability mass function.
• E.g., Categorical distribution: 𝒙 ∼ 𝐶𝑎𝑡 𝒙 𝝅 , 𝜃 = 𝝅, 𝜋( ≥ 0,∑(𝜋( = 1

𝑝! 𝒙 = 𝒙( = 𝜋(

• Independence: 𝒙 and 𝒚 are independent if and only if 𝑝 𝒙, 𝒚 = 𝑝 𝒙 𝑝(𝒚). 

Review of Probability and Statistics



• Marginal distribution
• Continuous case: 𝑝 𝒙 = ∫𝑝 𝒙, 𝒚 𝑑𝒚
• Discrete case: 𝑝 𝒙 = ∑) 𝑝 𝒙, 𝒚

• Conditional distribution

𝑝 𝒚 ∣ 𝒙 =
𝑝 𝒙, 𝒚
𝑝(𝒙)

• Product rule
𝑝 𝒙, 𝒚 = 𝑝(𝒙 ∣ 𝒚)𝑝 𝒚 = 𝑝(𝒚 ∣ 𝒙)𝑝(𝒙)

• Bayes rule

𝑝 𝒚 ∣ 𝒙 =
𝑝(𝒙 ∣ 𝒚)𝑝(𝒚)

𝑝(𝒙)

Marginals, Conditionals, Product Rule, Bayes Rule



• Assume 𝒙 ∼ 𝒩 𝒙 𝝁, 𝚺 , where 

𝒙 =
𝒙%
𝒙& ,                𝝁 =

𝝁%
𝝁& ,             𝚺 =

𝚺% 𝚺%&
𝚺%&' 𝚺&

• Then, we get the following results

𝑝 𝒙% = 𝒩 𝒙% 𝝁% , 𝚺% ,
𝑝 𝒙% ∣ 𝒙& =𝒩 𝒙% 5𝝁% , 6𝚺% , 

where
5𝝁% = 𝝁% + 𝚺%&𝚺&(# (𝒙& − 𝝁&)
6𝚺% = 𝚺% − 𝚺%&𝚺&(#𝚺%&'

Example: Marginal and Conditional for a Gaussian

Warm-up exercise -> HW1



• Assume 𝒚 ∼ 𝐶𝑎𝑡 𝒚 𝝅 , 𝒚 ∈ 1,… , 𝐾 .

• Assume 𝒙 ∣ 𝒚 ∼ 𝒩 𝒙 𝝁𝒚, 𝚺𝒚 .

• Then, 𝒙 is a mixture of Gaussians

𝑝 𝒙 =?
𝒚

𝑝 𝒙, 𝒚 =?
𝒚

𝑝 𝒙 ∣ 𝒚 𝒑(𝒚) = ?
*+#

𝑲

𝑝 𝒙 ∣ 𝒚 = 𝑘 𝑝(𝒚 = 𝑘)

MarginalizaCon Product rule = ?
*+#

𝑲

𝒩 𝒙 𝝁* , 𝚺* 𝜋*

Example: Marginal for a Mixture of Gaussians



• Expectation
• Continuous case: 𝝁𝒙 = 𝔼 𝒙 = ∫𝒙 𝑝 𝒙 𝑑𝒙

• Discrete case: 𝝁𝒙 = 𝔼 𝒙 = ∑( 𝒙(𝑝(𝒙 = 𝒙()

• Covariance
• Continuous case: 

• 𝚺𝒙 = 𝕍 𝒙 = ∫ 𝒙 − 𝝁𝒙 𝒙 − 𝝁𝒙 " 𝑝 𝒙 𝑑𝒙

• 𝚺𝒙𝒚 = 𝐶𝑜𝑣 𝒙, 𝒚 = ∫ 𝒙 − 𝝁𝒙 𝒚 − 𝝁𝒚
"
𝑝 𝒙, 𝒚 𝑑𝒙𝑑𝒚

• Discrete case: 
• 𝚺𝒙 = 𝕍 𝒙 = ∑$ 𝒙$ − 𝝁𝒙 𝒙$ − 𝝁𝒙 " 𝑝(𝒙 = 𝒙$)
• 𝚺𝒙𝒚 = 𝐶𝑜𝑣 𝒙, 𝒚 = ∑$ 𝒙$ − 𝝁𝒙 𝒚$ − 𝝁𝒚

" 𝑝(𝒙 = 𝒙$, 𝒚 = 𝒚$)

Expectations and Covariance



• Entropy of a random variable 𝒙
• It captures how much “uncertainty” is present in 𝒙.
• Definition:    𝐻 𝒙 = 𝔼𝒙~,(𝒙)[− log 𝑝(𝒙)]
• Continuous: 𝐻 𝒙 = −∫/ log(𝑝 𝒙 ) 𝑝 𝒙 𝑑𝒙
• Discrete: 𝐻 𝒙 = −∑0 log(𝜋()𝜋( where  𝜋( = 𝑃(𝒙 = 𝑘)

• Examples:
• Uniform:  𝜋( =

&
1
⇒ 𝐻 𝒙 = −∑0 log(

&
1
) &
1
= log(𝐾)

• Bernoulli: 𝜋& = 𝑞 ⇒ 𝐻 𝒙 = −𝑞 log 𝑞 − (1 − 𝑞) log 1 − 𝑞

• Conditional entropy: uncertainty of 𝒙 when 𝒚 is observed
• 𝐻(𝒙 ∣ 𝒚) = 𝔼𝒙,𝒚∼, 𝒙,𝒚 − log 𝑝(𝒙 ∣ 𝒚)

Entropy and Conditional Entropy

High entropy Low entropy

Entropy of a Bernoulli variable



• KL divergence measures the similarity between two distributions 𝑝, 𝑞
𝐾𝐿 𝑝 ∣∣ 𝑞 = 𝔼𝒙∼, log

𝑝(𝒙)
𝑞(𝒙)

• Non-negativity 𝐾𝐿 𝑝 ∣∣ 𝑞 ≥ 0. Equality holds iff 𝑝 = 𝑞.
• In general triangle inequality and symmetry does not hold.

• Mutual Information measures the mutual dependence between 𝒙 and 𝒚

𝐼 𝒙; 𝒚 = 𝐾𝐿 𝑝 𝒙, 𝒚 ∣∣ 𝑝 𝒙 𝑝 𝒚 = 𝔼𝒙,𝒚∼, 𝒙,𝒚 log
𝑝(𝒙, 𝒚)
𝑝(𝒙)𝑝(𝒚)

• If 𝒙, 𝒚 are independent, then 𝐼 𝒙; 𝒚 = 0.
• 𝐼 𝒙; 𝒚 measures the uncertainty in 𝒙 after observing 𝒚.

𝐼 𝒙; 𝒚 = 𝐻 𝒙 − 𝐻 𝒙 𝒚 = 𝐻 𝒚 − 𝐻(𝒚 ∣ 𝒙)

Kullback–Leibler Divergence and Mutual Information
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Outline



• A statistical generative model is a probability distribution 𝑝(𝒙)

• It is generative because sampling from 𝒑(𝒙) generates new images

Statistical Generative Models

probability 𝑝(𝒙)
A probability 
distribution

𝑝(𝒙)
Image 𝒙

…



The image 𝒙 is given. Goal: decision boundary, via 
conditional distribution over label 𝒚

Ex: logistic regression, convolutional net, etc.

Decisi
on boundary

Discriminative: classify bedroom vs. dining room Generative: generate X

The input 𝒙 is not given. Requires a 
model of the joint distribution over 
both 𝒙 and 𝒚

P(𝒚 = Bedroom | 𝒙 =                     ) = 0.0001
P(𝒚 = Bedroom, 𝒙 = ) = 0.0002

… …

𝒚 = 𝐵, 𝒙 =

𝒚 = 𝐵, 𝒙 =

𝒚 = 𝐷, 𝒙 =

𝒚 = 𝐷, 𝒙 =

𝒚 = 𝐵, 𝒙 = 𝒚 = 𝐷, 𝒙 =

Discriminative vs. Generative Models



Therefore, a disc. model cannot handle missing data P(𝒚 = Bedroom ∣ 𝒙 = )

Joint and conditional are related via Bayes Rule:

13

P(𝒚 = Bedroom ∣ 𝒙 = ) = 

P(𝒚 = Bedroom , 𝒙 = )

P(𝒙 = )

Discriminative: 𝒚 is simple; 𝒙 is always given, so not need to model P(𝒙 = )

Discriminative vs. Generative



Class conditional generative models are also possible:

It’s often useful to condition on rich side information Y

A discriminative model is a very simple conditional generative model of 𝒚:

P(𝒙 = ∣ 𝒚 = Bedroom)

P(𝒙 = ∣ Caption = “A black table with 6 chairs)

14

P(𝒚 = Bedroom ∣ 𝒙 = ) 

Conditional Generative Models



• AI Is Not Only About 
Decision Making

• Importance of uncertainty
and understanding in
decision making

Why Generative Models?
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• We are given a training set of examples, e.g., images of dogs

• We want to learn a probability distribution 𝑝(𝑥) over images 𝑥 to allow for
• Generation: If we sample 𝑥new ∼ 𝑝(𝑥), 𝑥new should look like a dog (sampling)
• Density estimation: 𝑝(𝑥) should be high if 𝑥 looks like a dog, and low otherwise (anomaly 

detection)
• Unsupervised representation learning: We should be able to learn what these images have 

in common, e.g., ears, tail, etc. (features)

Learning Generative Models



• We are given a training set of examples, e.g., images of dogs

• What learning criterion should we use? 
• What optimization algorithm should we use? 
• What classes of models should we learn?

Learning Generative Models



• Given: a dataset  𝒟 = {𝒙#, … , 𝒙=} of i.i.d. samples 
from the unknown data distribution 𝑝>?@?(𝑥)
• Goal: learn a distribution 𝑝! 𝑥 parameterized by 
𝜃 that is as close to 𝑝>?@?(𝑥)

Learning Criterion: Maximum Likelihood Estimation

• Taking 𝑑 as the KL divergence introduced before:  min
!
𝐾𝐿[𝑝>?@? 𝑥 || 𝑝! 𝑥 ]

• Since 𝐾𝐿 𝑝>?@? 𝑥 || 𝑝! 𝑥 = 𝐸A∼C!"#" log C!"#" A
C$ A

and we optimize over 𝜃, the 
above problem is equivalent to

max
!

𝐸A∼C!"#" log 𝑝! 𝑥

• As we do not know the true distribution 𝑝>?@?(𝑥) and only have samples 𝒟 from 
it, we can replace the above objective with an unbiased estimate of it

max
!

1
𝑁
?
D+#

=

log 𝑝! 𝑥D
This is the classic Maximum 
Likelihood Estimation (MLE) principle!



• Likelihood is expressed as the joint distribution over all samples
• And by our i.i.d. assumption

ℒ(𝜃) = 𝑝! 𝒙&, … , 𝒙8 =W
9:&

8

𝑝! 𝒙9

• Taking the log, we can rewrite 

ℓ 𝜃 = log ℒ 𝜃 = log W
D+#

=

𝑝! 𝒙D =?
D+#

=

log 𝑝! 𝒙D

• The maximum likelihood estimator is the parameters that maximizes ℓ 𝜃 , i.e.

𝜃̂EF = argmax!?
D+#

=

log 𝑝! 𝒙D

Maximum Likelihood Estimation (MLE)



• Goal: optimize an objective that contains an expectation
min
!
𝑔 𝜃 ≔ 𝐸/~,[𝑓 𝑥, 𝜃 ]

• First order algorithms to optimize 𝑔 𝜃
• Tractable even when 𝜃 is in high dimensions
• Gradient descent: 𝜃((;&) = 𝜃(() − 𝜂∇!𝑔 𝜃(()

• Many variants to accelerate / deal with non-differentiability
• Challenge: It is difficult to compute ∇!𝑔 𝜃 in closed form
• ∇!𝑔 𝜃 = ∇!𝐸/~, 𝑓 𝑥, 𝜃 = 𝐸/~, ∇!𝑓 𝑥, 𝜃
• Often 𝑝 is the true data distribution which we do not know; we have samples from 𝑝
• Even if we know 𝑝, integrating a potentially very complicated 𝑓 is difficult 

• Solution: Approximating ∇!𝑔 𝜃 with samples
• Let 𝑥&, … , 𝑥< be a batch of i.i.d. samples from 𝑝
• &
<
∑9<∇!𝑓 𝑥9, 𝜃 is an unbiased estimator of ∇!𝑔 𝜃

• Stochastic gradient descent: 𝜃((;&) = 𝜃(() − 𝜂 &
<
∑9<∇!𝑓 𝑥9, 𝜃

Optimization Algorithm: Stochastic Gradient Descent
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• Given: 𝑁 i.i.d. samples 𝑥#, … 𝑥= from an unknown Gaussian 𝒩(𝜇, Σ) in ℝ"

• Goal: use MLE to estimate the parameters 𝜃 = (𝜇, Σ) of the Gaussian distribution

• Recall Gaussian density: 𝑝 𝑥 = #
GH % >I@(𝚺)

exp − #
G
𝒙 − 𝝁 '𝚺(𝟏 𝒙 − 𝝁

• This allows us to write down the likelihood function…

ℒ(𝜃) =W
9:&

8

𝑝! 𝒙9 =
exp −12∑9:&

8 𝒙9 − 𝝁 '𝚺$𝟏 𝒙9 − 𝝁

(2𝜋)
8"
% det(𝚺)

8
%

• … and the log of the likelihood

Gaussian Parameter Estimation via MLE

ℓ 𝜃 =b
9:&

8

−
𝐷
2
log 2𝜋 −

1
2
log det 𝚺 − 𝒙9 − 𝝁 '𝚺$& 𝒙9 − 𝝁

= −8"
%
log 2𝜋 − 8

%
log det 𝚺 − &

%
∑9:&8 𝒙9 − 𝝁 '𝚺$& 𝒙9 − 𝝁



• Reminder: Log-likelihood objective

• To find the optimal          , we take the derivatives of our objective w.r.t our 
parameters and set them to 0

𝜕ℓ(𝜃)
𝜕𝝁

= 0,
𝜕ℓ(𝜃)
𝜕𝚺

= 0

Finding the gradient of parameters

<latexit sha1_base64="03AJEF34p73rYryUsXoc279wS+o="></latexit>

✓ML

ℓ 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2
b
9:&

8

𝒙9 − 𝝁 '𝚺$& 𝒙9 − 𝝁



For the mean
• Reminder: Log-likelihood objective

• Taking the derivative log-likelihood w.r.t. to the mean yields

𝜕ℓ(𝜃)
𝜕𝝁

= ∑9:&8 𝚺$& 𝒙9 − 𝝁 = 0

∑9:&8 𝒙9 − 𝝁 = 0

• Hence, 𝝁̂EF =
#
=
∑D+#= 𝒙D

ℓ 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2
b
9:&

8

𝒙9 − 𝝁 '𝚺$& 𝒙9 − 𝝁



For the covariance
• Reminder: Log-likelihood objective

• Before we find the derivative, we find a change of variable to handle the inverse 
covariance (also known as the precision matrix

𝑺 = 𝚺$&

• And note the following identity involving traces
𝑺𝒙 = tr 𝒙'𝑺𝒙 = tr 𝑺𝒙𝒙'

ℓ 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2
b
9:&

8

𝒙9 − 𝝁 '𝚺$& 𝒙9 − 𝝁



For the covariance
• Reminder: Log-likelihood objective

• The two facts:
• 𝑺 = 𝚺$&
• 𝑺𝒙 = tr 𝒙'𝑺𝒙 = tr 𝑺𝒙𝒙'

• Using these two facts, we can rewrite the log-likelihood in terms of 𝑺 (omitting 
terms that derivative will cancel)

ℓ 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2
b
9:&

8

𝒙9 − 𝝁 '𝚺$& 𝒙9 − 𝝁

ℓ 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝑺$& −

1
2
tr 𝑺b

9:&

8

𝒙9 − 𝝁 𝒙9 − 𝝁 '



For the covariance
• From our re-written log-likelihood function

• Taking the derivative with respect to 𝑺

𝜕ℓ(𝜃)
𝜕𝑺

=
𝑁
2
𝑺$& −

1
2
∑9:&8 𝒙9 − 𝝁 𝒙9 − 𝝁 ' = 0

• Arriving at our desired ML estimator for the covariance
𝚺̂>? = 𝑺$& =

1
𝑁
∑9:&8 𝒙9 − 𝝁 𝒙9 − 𝝁 '

ℓ 𝜃 = −
𝑁𝐷
2
log 2𝜋 +

𝑁
2
log det 𝑺 −

1
2
tr 𝑺b

9:&

8

𝒙9 − 𝝁 𝒙9 − 𝝁 '



• The complete statement:

• If we assume our data samples are i.i.d Gaussians, the maximum log likelihood 
estimators for the mean and covariance are

𝝁̂EF =
#
=
∑D+#= 𝒙D 𝚺̂EF = 𝑺(# = #

=
∑D+#= 𝒙D − 𝝁 𝒙D − 𝝁 '

ML Estimators for mean and variance
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• To modeling a single pixel's color, one needs three 
discrete random variables:
• Red Channel 𝑅 taking values in {0,⋯ , 255}
• Green Channel 𝐺 taking values in {0,⋯ , 255}
• Blue Channel 𝐵 taking values in {0,⋯ , 255}

Example: RGB images

• Sampling from the joint distribution (𝑟, 𝑔, 𝑏) ∼ 𝑝(𝑅, 𝐺, 𝐵) randomly generates a 
color for the pixel. How many parameters do we need to specify the joint 
distribution 𝑝(𝑅 = 𝑟, 𝐺 = 𝑔, 𝐵 = 𝑏) ?

256 ∗ 256 ∗ 256 − 1



Example: Joint Distribution

• Suppose 𝑋#, … , 𝑋K are Bernoulli random variables modelling 𝑛 pixels of an image
• How many possible states?

2×2×⋯×2

K Cmes

= 2K

• Sampling from 𝑝 𝑥#, … , 𝑥K generates an image
• How many parameters to specify the joint distribution 𝑝 𝑥#, … , 𝑥K over 𝑛

binary pixels?
2K − 1



• If 𝑋#, … , 𝑋K are independent, then
𝑝 𝑥#, … , 𝑥K = 𝑝 𝑥# 𝑝 𝑥G ⋯𝑝 𝑥K

• How many possible states?         2K

• How many parameters to specify the joint distribution 𝑝 𝑥#, … , 𝑥K ?
• How many to specify the marginal distribution 𝑝 𝑥& ? 1

• 2! entries can be described by just 𝑛 numbers (if each 𝑋" just take 2 
values)!
• Independence assumption is too strong. Model not likely to be useful
• For example, each pixel chosen independently when we sample from it.

Structure Through Independence



Structure Through Conditional Independence
• Using Chain Rule

𝑝 𝑥#, … , 𝑥K = 𝑝 𝑥# 𝑝 𝑥G ∣ 𝑥# 𝑝 𝑥L ∣ 𝑥#, 𝑥G ⋯𝑝 𝑥K ∣ 𝑥#, ⋯ , 𝑥K(#
• How many parameters? 1 + 2 +⋯+ 2K(# = 2K − 1
• 𝑝 𝑥& requires 1 parameter
• 𝑝 𝑥% ∣ 𝑥& = 0 requires 1 parameter, 𝑝 𝑥% ∣ 𝑥& = 1 requires 1 parameter Total 2 

parameters.
• . .

• 2K − 1 is still exponential, chain rule does not buy us anything.
• Now suppose 𝑋DM# ⊥ 𝑋#, … , 𝑋D(# ∣ 𝑋D, then

𝑝 𝑥#, … , 𝑥K = 𝑝 𝑥# 𝑝 𝑥G ∣ 𝑥# 𝑝 𝑥L ∣ 𝑥#, 𝑥G ⋯𝑝 𝑥K ∣ 𝑥#, ⋯ , 𝑥K(#
= 𝑝 𝑥# 𝑝 𝑥G ∣ 𝑥# 𝑝 𝑥L ∣ 𝑥G ⋯𝑝 𝑥K ∣ 𝑥K(#

• How many parameters? 2𝑛 − 1. Exponential reduction!



• Autoregressive Models

𝑝 𝐱 = 𝑝 𝑥N W
D+#

"

𝑝 𝑥D|𝐱OD ,

• Latent Variable Models
𝐳 ∼ 𝑝 𝐳
𝐱 ∼ 𝑝 𝐱|𝐳

• Energy Based Models

𝑝 𝐱 =
exp{−𝐸 𝐱 }

𝑍
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