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* Marginals, Conditionals, Product Rule, Bayes Rule & Examples for Gaussians
* Expectations, Covariance, Entropy, KL Divergence, Mutual Information
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Review of Probability and Statistics

* Data x € X follows some data distribution x ~ pg (x) with parameter 6.
* Properties: pg(x) = 0 (non-negativity), | pg(x)dx = 1 (add up to 1)

* Continuous case: x € R?, py(x) is a probability density function.
* E.g., Gaussian distribution: x ~ N(x | 1, 2),0 = (0, X),u e RP,x e RP*P % = 0

_D 1 1
po() = (2m)72 det ()72 exp (= 5 (x — T (x — )

* Discrete case: x € {x{, ..., Xg}, Pg(X) is a probability mass function.
* E.g., Categorical distribution: x ~ Cat(x | m),0 =m, m, = 0,1, = 1

po(x = x) = mWy,

* Independence: x and y are independent if and only if p(x, y) = p(x)p(y).



Marginals, Conditionals, Product Rule, Bayes Rule

* Marginal distribution
e Continuous case: p(x) = [p(x, y)dy

* Discrete case: p(x) = ZyP(X, J’)

e Conditional distribution
p(x,y)

p(x)

p(y | x)=

 Product rule
p(x,y) =px | y)p(y) =pQy | x)p(x)

* Bayes rule
p(x | y)p(y)

p(x)

p(y | x) =



Example: Marginal and Conditional for a Gaussian

* Assumex ~ N (x| u,X), where

y = xa] _ Ma] y — [Za 2:ab]
_xb’ ”_ﬂb’ _Zgb Zb

* Then, we get the following results

p(xa) — N(xa | ﬂa;za );
p(xa | xb) :N(xa | ﬁaifa )r

where
Warm-up exercise -> HW1

o =Ha+ 225" (xp — Hp)
a =2q— zabzglz;—b

M V)



Example: Marginal for a Mixture of Gaussians
* Assumey ~ Cat(y|m),ye{l,.., K}

* Assumex |y ~ N (x| py, T, ).

* Then, x is a mixture of Gaussians

K

p() =) p(xy) =) p@x 1Y) =) px1y=kpO =k

y y

k=1
K
Marginalization Product rule = z N(x | py, Xy )1y
k=1



Expectations and Covariance

* Expectation
* Continuous case: u, = E[x] = [ xp(x)dx

* Discrete case: i, = E[x] = X xxp(x = x)

 Covariance
 Continuous case:

« ,=V[x] = [(x — p)(x — ) T p(x)dx
° ny = Cov|x,y] f(x ﬂx)(y ”y) p(x,y)dxdy

* Discrete case:
« T, =V[x] = X — ) O — i) " p(x = x3)
T
© Ty = Covlx,y] = Xp(xx — ) (Vi — 1y) p(x =21,y = ¥



Entropy and Conditional Entropy

* Entropy of a random variable x - .
* |t captures how much “uncertainty” is present in x. Q: s )
* Definition: H(x) = Ey_px[—logp(x)] .OIIIIIIIII O'z
* Continuous: H(x) = — fxlog(p(x)) p(x)dx (@) unform disvbuton (0 Do disttion
* Discrete: H(x) = — ) log(m,)m, where m, = P(x = k) High entropy ~ Low entropy
1
* Examples:
* Uniform: m;, = % = H(x) = —Zklog(%)% = log(K)
%0.5
* Bernoulli: 1y =g = H(x) = —qlogq — (1 — gq) log(1 — q)

* Conditional entropy: uncertainty of x when y is observed
* Hx 1Y) = Exy-pyl—logp(x | y)] " PrXZ 1) 1

Entropy of a Bernoulli variable




Kullback—Leibler Divergence and Mutual Information

* KL divergence measures the similarity between two distributions p, g

p(x)

KL[p Il q] = E,. [lo ]
Sl R Te)

* Non-negativity KL[p || g] = 0. Equality holds iff p = q.

* In general triangle inequality and symmetry does not hold.

* Mutual Information measures the mutual dependence between x and y

p(x,y) )]

I(x;y) = KL[p(x,y) I p(O)pW)] = Exyp(ay) [log (p €3)46)

* If x, y are independent, then I(x;y) = 0. HOO HEY)
 I(x; y) measures the uncertainty in x after observing y.

I(x;y)=Hx)—H(x|ly)=H@)—H{ | x)
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Statistical Generative Models

* A statistical generative model is a probability distribution p(x)

A probability
distribution | == probability p(x)
p(x)

* It is generative because sampling from p(x) generates new images




Discriminative vs. Generative Models

Discriminative: classify bedroom vs. dining room Generative: generate X

The input not given. Reqs a
model of the joint distribution over
both x and y

The image x is given. Goal: decision boundary, via
conditional distribution over label y

P(y = Bedroom | x = a secsus| ) = 0.0001

P(y = Bedroom, x = Wgsusl ) = 0.0002

Ex: logistic regression, convolutional net, etc.



Discriminative vs. Generative

Joint and conditional are related via Bayes Rule:

P(y = Bedroom ,x =




Conditional Generative Models

Class conditional generative models are also possible:

14



Why Generative Models?

* Al Is Not Only About
Decision Making

* Importance of uncertainty
and understanding in
decision making

+ —
-
P
p(y = cat|x) = 0.90 noise p(y = cat|x) = 0.05
p(y =dog|x) = 0.05 p(y = dog|x) = 0.05
p(y = horse|x) = 0.05 p(y = horse|x) =0.90

Fig. 1.1 An example of adding noise to an almost perfectly classified image that results in a shift
of predicted label

p(x,y) = p(y[x) p(x)

p(blue|x) is high p(blue|x) is high
= certain decision! and p(x) is low
= uncertain decision!

Fig. 1.2 And example of data (left) and two approaches to decision making: (middle) a discrimi-
native approach and (right) a generative approach
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Learning Generative Models

* We are given a training set of examples, e.g., images of dogs

6EM

Model family

* We want to learn a probability distribution p(x) over images x to allow for
* Generation: If we sample xpnew ~ P(X), xnew should look like a dog (sampling)

* Density estimation: p(x) should be high if x looks like a dog, and low otherwise (anomaly
detection)

* Unsupervised representation learning: We should be able to learn what these images have
in common, e.g., ears, tail, etc. (features)



Learning Generative Models

* We are given a training set of examples, e.g., images of dogs

6eEM

Model family

* What learning criterion should we use?
* What optimization algorithm should we use?

 What classes of models should we learn?



Learning Criterion: Maximum Likelihood Estimation
* Given: a dataset D = {x4, ..., xy} of i.i.d. samples -
from the unknown data dlstrlbutlon Ddata (X)

* Goal: learn a distribution py(x) parameterized by
0 that is as close to pgat4 (%)

Model family

* Taking d as the KL divergence introduced before: mein KL[pgata () || po(x)]

Pdata(Xx)
pe(x)

* Since KL|pgata(x) || Do (X)] = Exp ... [log and we optimize over 6, the

above problem is equivalent to

Max Exp,, 108 g (X)]

* As we do not know the true distribution p4,t4(x) and only have samples D from
it, we can replace the above objectlve with an unbiased estimate of it

1 This is the classic Maximum
maX AT Og Po (xl) Likelihood Estimation (MLE) principle!




Maximum Likelihood Estimation (MLE)

* Likelihood is expressed as the joint distribution over all samples

* And by our i.i.d. assumption

N
£(6) = po (s, ., x) = | | poxd)
=1

* Taking the log, we can rewrite
N N
£(6) = log(£(®)) =log| | | po(x) | = ) logpp(x)
i=1 =1
* The maximum likelihood estimator is the e\?rameters that maximizes £(8), i.e.

Oy, = argmaxg z log pe (x;)
=1



Optimization Algorithm: Stochastic Gradient Descent

* Goal: optimize an objective that contains an expectation
min g(6) = Eyp[f (x, 0]

* First order algorithms to optimize g(0)
* Tractable even when @ is in high dimensions

« Gradient descent:; k+1) = g(k) — T]V@Q(H(k))
e Many variants to accelerate / deal with non-differentiability

* Challenge: It is difficult to compute Vgg(8) in closed form

* Veg(e) — VQEx'vp[f(xl 9)] — Ex~p [Vef(x»e)]
* Often p is the true data distribution which we do not know; we have samples from p
* Even if we know p, integrating a potentially very complicated f is difficult

* Solution: Approximating Vg g(8) with samples
* Let x4, ..., xp be a batch of i.i.d. samples from p

. %Z{-’ Vof (x;,8) is an unbiased estimator of Vg g(60)
« Stochastic gradient descent: k+1D) = g(k) — %Z{? Vof (x;,0)
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Gaussian Parameter Estimation via MLE

* Given: N i.i.d. samples x4, ... x5 from an unknown Gaussian NV (u,X) in RP
* Goal: use MLE to estimate the parameters 8 = (u, X) of the Gaussian distribution

* Recall Gaussian density: p(x) = \/(Zn)l;l S exp (—%(x — ) (x - u))

* This allows us to write down the likelihood function...
1 _
exp (— 5 2ig (6 — ) TET (x; — u))

N
LO) =] |polx;) =
1’—_1[ ’ (Zﬂ)gdet(Z)%

e ... and the log of the likelihood

2(0) = 2 ——log 2T — —log detE — (x; — W) TE1(x; — p)

= ——log 21T — —log detX — —Z L w2 — )



Finding the gradient of parameters

* Reminder: Log-likelihood objective

N

ND N 1

£(6) = ——-log 2 — = logdet X - Ez(xi — )T (x; — )
=1

* To find the optimal 6,,; , we take the derivatives of our objective w.r.t our
parameters and set them to O

0£(0) 0 0£(0) )
ou o



For the mean

* Reminder: Log-likelihood objective

N

ND N 1

£(6) = ——-log 2 — = logdet X - Ez(xi — )T (x; — )
=1

* Taking the derivative log-likelihood w.r.t. to the mean yields

G

on =Y 2 —w) =0

Z%V:1 (x;i—w) =0

A 1 N
* Hence, Hyp = NZi=1xi



For the covariance

* Reminder: Log-likelihood objective

N

ND N 1

£(6) = ——-log 2 — = logdet X - Ez(xi — )T (x; — )
=1

* Before we find the derivative, we find a change of variable to handle the inverse
covariance (also known as the precision matrix
§=x"1

* And note the following identity involving traces
Sx =tr(x"Sx) = tr(Sxx")



For the covariance

* Reminder: Log-likelihood objective

ND N 1 A
£(6) = ——-log 2 — = logdet X - Ez(xi —W)TE N (x; — p)
i=1
* The two facts:
+S§=x"1
e Sx = tr(x"Sx) = tr(Sxx")
* Using these two facts, we can rewrite the log-likelihood in terms of § (omitting
terms that derivative will cancel)

ND N 1 &
£(0) = —Tlog 21 — Elog det(s™1) — Str SE(xi —w)(x; — )’
i=1



For the covariance

* From our re-written log-likelihood function

ND N 1 [ < )
£(6) = ——~log 27 + = log det(S) — 5 tr SE(xi — ) (x; — )
=1

* Taking the derivative with respectto §

00(6) N __,

1 N T
S —25 —3 i (i —wx;—p)' =0

* Arriving at our desired ML estimator for the covariance
A 1
Yy, =8""= NZ{-V:l(xi - -’



ML Estimators for mean and variance

* The complete statement:

* If we assume our data samples are i.i.d Gaussians, the maximum log likelihood
estimators for the mean and covariance are

n 1 A _ 1
Hyp = ;Zﬁllxi Ly, =39S I = Nzll'v:l(xi — ) (x; — u)T
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Example: RGB images

* To modeling a single pixel's color, one needs three
discrete random variables:
* Red Channel R taking values in {0, ---, 255}
* Green Channel G taking values in {0, ---, 255}
* Blue Channel B taking values in {0, ---, 255}

* Sampling from the joint distribution (7, g, b) ~ p(R, G, B) randomly generates a
color for the pixel. How many parameters do we need to specify the joint
distributionp(R=1r,G = g,B =b) ?

256 x 256 * 256 — 1



Example: Joint Distribution

* Suppose X4, ..., X,, are Bernoulli random variables modelling n pixels of an image

* How many possible states?
2X2X e X2 =21

n times
e Sampling from p(xl, . xn) generates an image

* How many parameters to specify the joint distribution p(x4, ..., x,,) overn
binary pixels?

2" —1



Structure Through Independence

* If X4, ..., X,, are independent, then
p(xy, o, xp) = plx)p(xz) - plxy)
 How many possible states? 2™
* How many parameters to specify the joint distribution p(x4, ..., x;;) ?

* How many to specify the marginal distribution p(x;) ? 1

» 2™ entries can be described by just n numbers (if each X; just take 2
values)!

* Independence assumption is too strong. Model not likely to be useful

* For example, each pixel chosen independently when we sample from it.




Structure Through Conditional Independence

* Using Chain Rule
p(x1, s xp) = )P | x)0 (X3 1 X9, %5) (X | X1, Xp—1)
* How many parameters? 1 + 2 + --- + 2771 =27 — 1

* p(xq) requires 1 parameter

* p(x, | x; = 0) requires 1 parameter, p(x, | x; = 1) requires 1 parameter Total 2
parameters.

e 2™ — 1 is still exponential, chain rule does not buy us anything.
* Now suppose X;.1 L Xq,...,X;—_1 | X;, then
p(x1, ., %) = pe)p(eg [ x1)p(x3 |95, x2) - p(xy | %pes, Xp—1)
=px)p(xe | x)p(xs | x2) - p(xy | Xp—q)
* How many parameters? 2n — 1. Exponential reduction!



Taxonomy of Generative Models

* Autoregressive Models

p() =) | [p ixn,

e Latent Variable Models

z ~ p(z)
X ~ p(x|z)
* Energy Based Models
exp{—E (x)}

p(x) = ~



Taxonomy of Generative Models

Deep Generative Models

Autoregressive Flow-based Latent variable = Energy-based
models models models models
(e.g., PixelCNN) (e.g., RealNVP)
Implicit models Prescribed models

(e.g., GANSs) (e.g., VAEs)



